

What is UDDI?
UDDI is an XML-based standard for describing, publishing, and finding web services.

• UDDI stands for Universal Description, Discovery, and Integration.

• UDDI is a specification for a distributed registry of web services.

• UDDI is a platform-independent, open framework.

• UDDI can communicate via SOAP, CORBA, Java RMI Protocol.

• UDDI uses Web Service Definition Language (WSDL) to describe interfaces to web services.

• UDDI is seen with SOAP and WSDL as one of the three foundation standards of web services.

• UDDI is an open industry initiative, enabling businesses to discover each other and define how they
interact over the Internet.

UDDI has two sections:

• A registry of all web service's metadata, including a pointer to the WSDL description of a service.

• A set of WSDL port type definitions for manipulating and searching that registry.

History of UDDI
• UDDI 1.0 was originally announced by Microsoft, IBM, and Ariba in September 2000.

• Since the initial announcement, the UDDI initiative has grown to include more than 300 companies
including Dell, Fujitsu, HP, Hitachi, IBM, Intel, Microsoft, Oracle, SAP, and Sun.

• In May 2001, Microsoft and IBM launched the first UDDI operator sites and turned the UDDI registry
live.

• In June 2001, UDDI announced Version 2.0.

• Microsoft and IBM sites had implemented the 1.0 specification and were planning 2.0 support in the
near future.

• Currently UDDI is sponsored by OASIS.

Partner Interface Processes
Partner Interface Processes (PIPs) are XML-based interfaces that enable two trading partners to exchange
data. Dozens of PIPs already exist. Some of them are listed here:

• PIP2A2: Enables a partner to query another for product information.

• PIP3A2: Enables a partner to query the price and availability of specific products.

• PIP3A4: Enables a partner to submit an electronic purchase order and receive acknowledgment of the
order.

• PIP3A3: Enables a partner to transfer the contents of an electronic shopping cart.

• PIP3B4: Enables a partner to query the status of a specific shipment.

Private UDDI Registries
As an alternative to using the public federated network of UDDI registries available on the Internet,
companies or industry groups may choose to implement their own private UDDI registries.

These exclusive services are designed for the sole purpose of allowing members of the company or of the
industry group to share and advertise services amongst themselves.

Regardless of whether the UDDI registry is a part of the global federated network or a privately owned
and operated registry, the one thing that ties them all together is a common web services API for
publishing and locating businesses and services advertised within the UDDI registry.

A business or a company can register three types of information into a UDDI registry. This information is
contained in three elements of UDDI.

These three elements are:

• White Pages,

• Yellow Pages, and

• Green Pages.

White Pages
White pages contain:

• Basic information about the company and its business.

• Basic contact information including business name, address, contact phone number, etc.

• Unique identifiers for the company tax IDs. This information allows others to discover your web service
based upon your business identification.

Yellow Pages
• Yellow pages contain more details about the company. They include descriptions of the kind of
electronic capabilities the company can offer to anyone who wants to do business with it.

• Yellow pages use commonly accepted industrial categorization schemes, industry codes, product codes,
business identification codes and the like to make it easier for companies to search through the listings
and find exactly what they want.

Green Pages
Green pages contain technical information about a web service. A green page allows someone to bind to a
web service after it's been found. It includes:

• The various interfaces

• The URL locations

• Discovery information and similar data required to find and run the web service.

NOTE: UDDI is not restricted to describing web services based on SOAP. Rather, UDDI can be used to
describe any service, from a single webpage or email address all the way up to SOAP, CORBA, and Java
RMI services.The UDDI technical architecture consists of three parts:

UDDI Data Model
UDDI Data Model is an XML Schema for describing businesses and web services. The data model is
described in detail in the "UDDI Data Model" chapter.

UDDI API Specification
It is a specification of API for searching and publishing UDDI data.

UDDI Cloud Services
These are operator sites that provide implementations of the UDDI specification and synchronize all data
on a scheduled basis.

The UDDI Business Registry (UBR), also known as the Public Cloud, is a conceptually single system
built from multiple nodes having their data synchronized through replication.

The current cloud services provide a logically centralized, but physically distributed, directory. It means
the data submitted to one root node will automatically be replicated across all the other root nodes.
Currently, data replication occurs every 24 hours.

UDDI cloud services are currently provided by Microsoft and IBM. Ariba had originally planned to offer
an operator as well, but has since backed away from the commitment. Additional operators from other
companies, including Hewlett-Packard, are planned for the near future.

It is also possible to set up private UDDI registries. For example, a large company may set up its own
private UDDI registry for registering all internal web services. As these registries are not automatically
synchronized with the root UDDI nodes, they are not considered as a part of the UDDI cloud.

UDDI includes an XML Schema that describes the following data structures:

• businessEntity

• businessService

• bindingTemplate

• tModel

• publisherAssertion

businessEntity Data Structure
The business entity structure represents the provider of web services. Within the UDDI registry, this
structure contains information about the company itself, including contact information, industry
categories, business identifiers, and a list of services provided.

Here is an example of a fictitious business's UDDI registry entry:

<businessEntity businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40"

operator="http://www.ibm.com"

authorizedName="John Doe">

<name>Acme Company</name>

<description>

We create cool Web services

</description>

<contacts>

<contact useType="general info">

<description>General Information</description>

<personName>John Doe</personName>

<phone>(123) 123-1234</phone>

<email>jdoe@acme.com</email>

</contact>

</contacts>

<businessServices>

</businessServices>

<identifierBag>

<keyedReference

tModelKey="UUID:8609C81E-EE1F-4D5A-B202-3EB13AD01823"

name="D-U-N-S"

value="123456789" />

</identifierBag>

<categoryBag>

<keyedReference

tModelKey="UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2"

name="NAICS"

value="111336" />

</categoryBag>

</businessEntity>

businessService Data Structure
The business service structure represents an individual web service provided by the business entity. Its
description includes information on how to bind to the web service, what type of web service it is, and
what taxonomical categories it belongs to.

Here is an example of a business service structure for the Hello World web service.

<businessService serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"

businessKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">

<name>Hello World Web Service</name>

<description>A friendly Web service</description>

<bindingTemplates>

...

</bindingTemplates>

<categoryBag />

</businessService

Notice the use of the Universally Unique Identifiers (UUIDs) in the businessKey and serviceKey
attributes. Every business entity and business service is uniquely identified in all the UDDI registries
through the UUID assigned by the registry when the information is first entered.

bindingTemplate Data Structure
Binding templates are the technical descriptions of the web services represented by the business service
structure. A single business service may have multiple binding templates. The binding template represents
the actual implementation of the web service.

Here is an example of a binding template for Hello World.

<bindingTemplate serviceKey="uuid:D6F1B765-BDB3-4837-828D-8284301E5A2A"

bindingKey="uuid:C0E6D5A8-C446-4f01-99DA-70E212685A40">

<description>Hello World SOAP Binding</description>

<accessPoint URLType="http">

http://localhost:8080

</accessPoint>

<tModelInstanceDetails>

<tModelInstanceInfo

tModelKey="uuid:EB1B645F-CF2F-491f-811A-4868705F5904">

<instanceDetails>

<overviewDoc>

<description>

references the description of the

WSDL service definition

</description>

<overviewURL>

http://localhost/helloworld.wsdl

</overviewURL>

</overviewDoc>

</instanceDetails>

</tModelInstanceInfo>

</tModelInstanceDetails>

</bindingTemplate>

As a business service may have multiple binding templates, the service may specify different
implementations of the same service, each bound to a different set of protocols or a different network
address.

tModel Data Structure
tModel is the last core data type, but potentially the most difficult to grasp. tModel stands for technical
model.

tModel is a way of describing the various business, service, and template structures stored within the
UDDI registry. Any abstract concept can be registered within the UDDI as a tModel. For instance, if you
define a new WSDL port type, you can define a tModel that represents that port type within the UDDI.
Then, you can specify that a given business service implements that port type by associating the tModel
with one of that business service's binding templates.

Here is an example of a tModel representing the Hello World Interface port type.

<tModel tModelKey="uuid:xyz987..."

operator="http://www.ibm.com"

authorizedName="John Doe">

<name>HelloWorldInterface Port Type</name>

<description>

An interface for a friendly Web service

</description>

<overviewDoc>

<overviewURL>

http://localhost/helloworld.wsdl

</overviewURL>

</overviewDoc>

</tModel>

publisherAssertion Data Structure
This is a relationship structure putting into association two or more businessEntity structures according to
a specific type of relationship, such as subsidiary or department.

The publisherAssertion structure consists of the three elements: fromKey (the first businessKey), toKey
(the second businessKey), and keyedReference.

The keyedReference designates the asserted relationship type in terms of a keyName - keyValue pair
within a tModel, uniquely referenced by a tModelKey.

<element name="publisherAssertion" type="uddi:publisherAssertion" />

<complexType name="publisherAssertion">

<sequence>

<element ref="uddi:fromKey" />

<element ref="uddi:toKey" />

<element ref="uddi:keyedReference" />

</sequence>

</complexType>

A registry is of no use without some way to access it. The UDDI standard version 2.0 specifies two
interfaces for service consumers and service providers to interact with the registry.

Service consumers use Inquiry Interface to find a service, and service providers use Publisher Interface to
list a service.

The core of the UDDI interface is the UDDI XML Schema definitions. These define the fundamental
UDDI data types through which all the information flows.

The Publisher Interface
The Publisher Interface defines sixteen operations for a service provider managing its entries in the UDDI
registry:

• get_authToken: Retrieves an authorization token. All of the Publisher interface operations require that a
valid authorization token be submitted with the request.

• discard_authToken: Tells the UDDI registry to no longer accept a given authorization token. This step is
equivalent to logging out of the system.

• save_business: Creates or updates a business entity's information contained in the UDDI registry.

• save_service: Creates or updates information about the web services that a business entity provides.

• save_binding: Creates or updates the technical information about a web service's implementation.

• save_tModel: Creates or updates the registration of abstract concepts managed by the UDDI registry.

• delete_business: Removes the given business entities from the UDDI registry completely.

• delete_service: Removes the given web services from the UDDI registry completely.

• delete_binding: Removes the given web services’ technical details from the UDDI registry.

• delete_tModel: Removes the specified tModels from the UDDI registry.

• get_registeredInfo: Returns a summary of everything the UDDI registry is currently keeping track of for
the user, including all businesses, all services, and all tModels.

• set_publisherAssertions: Manages all of the tracked relationship assertions associated with an individual
publisher account.

• add_publisherAssertions: Causes one or more publisherAssertions to be added to an individual
publisher's assertion collection.

• delete_publisherAssertions: Causes one or more publisherAssertion elements to be removed from a
publisher's assertion collection.

• get_assertionStatusReport: Provides administrative support for determining the status of current and
outstanding publisher assertions that involve any of the business registrations managed by the individual
publisher account.

• get_publisherAssertions: Obtains the full set of publisher assertions that is associated with an individual
publisher account.

The Inquiry Interface
The inquiry interface defines ten operations for searching the UDDI registry and retrieving details about
specific registrations:

• find_binding: Returns a list of web services that match a particular set of criteria based on the technical
binding information.

• find_business: Returns a list of business entities that match a particular set of criteria.

• find_ltservice: Returns a list of web services that match a particular set of criteria.

• find_tModel: Returns a list of tModels that match a particular set of criteria.

• get_bindingDetail: Returns the complete registration information for a particular web service binding
template.

• get_businessDetail: Returns the registration information for a business entity, including all services that
entity provides.

• get_businessDetailExt: Returns the complete registration information for a business entity.

• get_serviceDetail: Returns the complete registration information for a web service.

• get_tModelDetail: Returns the complete registration information for a tModel.

• find_relatedBusinesses: Discovers businesses that have been related via the uddi-org:relationships
model.

USAGE EXAMPLE
Consider a company XYZ wants to register its contact information, service description, and online service
access information with UDDI. The following steps are necessary:

• Choose an operator with which to work. Each operator has different terms and conditions for
authorizing access to its replica of the registry.

• Build or otherwise obtain a UDDI client, such as those provided by the operators.

• Obtain an authentication token from the operator.

• Register information about the business. Include as much information as might be helpful to those
searching for matches.

• Release the authentication token.

• Use the inquiry APIs to test the retrieval of the information, including binding template information, to
ensure that someone who obtains it can use it successfully to interact with your service.

• Fill in the tModel information in case someone wants to search for a given service and find your
business as one of the service providers.

• Update the information as necessary to reflect the changing business contact information and new
service details, obtaining and releasing a new authentication token from the operator each time. Whenever
you need to update or modify the data you've registered, you have to go back to the operator with which
you have entered the data.

The following examples will show how the XYZ Company would register its information and how a
distributor interested in carrying the XYZ's product line might find information about how to contact the
company and place an order, using the XYZ.com Web services.

Creating Registry
After obtaining an authentication token from one of the operators – Microsoft, for example – the
XYZ.com developers decide what information to publish to the registry and use one of the UDDI tools
provided by Microsoft. If necessary, the developers can also write a Java, C#, or VB.NET program to
generate the appropriate SOAP messages. Here is an example.

POST /save_business HTTP/1.1

Host: www.XYZ.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "save_business"

<?xml version="1.0" encoding="UTF-8" ?>

<Envelope xmlns="http://schemas/xmlsoap.org/soap/envelope/">

<Body>

<save_business generic="2.0" xmlns="urn:uddi-org:api_v2">

<businessKey="">

</businessKey>

<name>

XYZ, Pvt Ltd.

</name>

<description>

Company is involved in giving Stat-of-the-art....

</description>

<identifierBag> ... </identifierBag>

...

</save_business>

</Body>

</Envelope>

This example illustrates a SOAP message requesting to register a UDDI business entity for XYZ
Company. The key element is blank, because the operator automatically generates the UUID key for the
data structure. Most fields are omitted for the sake of showing a simple example.

Company XYZ can always execute another save_business operation to add to the basic information
required to create a business entity.

Retrieving Information
After XYZ Company has updated its UDDI entry with the relevant information, companies that want to
become XYZ distributors can look up contact information in the UDDI registry and obtain the service
descriptions and the access points for the two Web services that XYZ.com publishes for online order
entry: preseason bulk orders and in-season restocking orders.

This example illustrates a sample SOAP request to obtain business detail information about the XYZ
Company. Once you know the UUID, or key, for the specific business that's been registered, you can use
it in the get_businessDetail API to return specific information about that business.

POST /get_businessDetail HTTP/1.1

Host: www.XYZ.com

Content-Type: text/xml; charset="utf-8"

Content-Length: nnnn

SOAPAction: "get_businessDetail"

<?xml version="1.0" encoding="UTF-8" ?>

<Envelope xmlns="http://schemas/xmlsoap.org/soap/envelope/">

<Body>

<get_businessDetail generic="2.0" xmlns="urn:uddi-org:api_v2">

<businessKey="C90D731D-772HSH-4130-9DE3-5303371170C2">

</businessKey>

</get_businessDetail>

</Body>

</Envelope>

UDDI WITH WSDL

The UDDI data model defines a generic structure for storing information about a business and the web
services it publishes. The UDDI data model is completely extensible, including several repeating
sequence structures of information. However, WSDL is used to describe the interface of a web service.
WSDL is fairly straightforward to use with UDDI.

• WSDL is represented in UDDI using a combination of businessService, bindingTemplate, and tModel
information.

• As with any service registered in UDDI, generic information about the service is stored in the
businessService data structure, and information specific to how and where the service is accessed is stored
in one or more associated bindingTemplate structures. Each bindingTemplate structure includes an
element that contains the network address of the service and has associated with it one or more tModel
structures that describe and uniquely identify the service.

• When UDDI is used to store WSDL information, or pointers to WSDL files, the tModel should be
referred to by convention as type wsdlSpec, meaning that the overviewDoc element is clearly identified as
pointing to a WSDL service interface definition.

• For UDDI, WSDL contents are split into two major elements: the interface file, and the implementation
file.

The Hertz reservation system web service provides a concrete example of how UDDI and WSDL works
together. Here is the <tModel> for this web service:

<tModel authorizedName="..." operator="..." tModelKey="...">

<name>HertzReserveService</name>

<description xml:lang="en">

WSDL description of the Hertz reservation service interface

</description>

<overviewDoc>

<description xml:lang="en">

WSDL source document.

</description>

<overviewURL>

http://mach3.ebphost.net/wsdl/hertz_reserve.wsdl

</overviewURL>

</overviewDoc>

<categoryBag>

<keyedReference

tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4"

keyName="uddi-org:types" keyValue="wsdlSpec"/>

</categoryBag>

</tModel>

The key points are:

• The overviewURL element gives the URL to where the service interface definition WSDL file can be
found. This allows humans and UDDI/WSDL aware tools to locate the service interface definition.

• The purpose of the keyedReference element in the categoryBag is to make sure that this tModel is
categorized as a WSDL specification document.

